Spectrum of One Sturm-Liouville Type Problem on Two Disjoint Intervals
نویسنده
چکیده
In this study by modifying some techniques of classical Sturm-Liouville theory and suggesting own approaches we investigate some spectral properties of one Sturm-Liouville type problem on two disjoint intervals.
منابع مشابه
Solving Inverse Sturm-Liouville Problems with Transmission Conditions on Two Disjoint Intervals
In the present paper, some spectral properties of boundary value problems of Sturm-Liouville type on two disjoint bounded intervals with transmission boundary conditions are investigated. Uniqueness theorems for the solution of the inverse problem are proved, then we study the reconstructing of the coefficients of the Sturm-Liouville problem by the spectrtal mappings method.
متن کاملMatrix representation of a sixth order Sturm-Liouville problem and related inverse problem with finite spectrum
In this paper, we find matrix representation of a class of sixth order Sturm-Liouville problem (SLP) with separated, self-adjoint boundary conditions and we show that such SLP have finite spectrum. Also for a given matrix eigenvalue problem $HX=lambda VX$, where $H$ is a block tridiagonal matrix and $V$ is a block diagonal matrix, we find a sixth order boundary value problem of Atkin...
متن کاملOn a class of systems of n Neumann two-point boundary value Sturm-Liouville type equations
Employing a three critical points theorem, we prove the existence ofmultiple solutions for a class of Neumann two-point boundary valueSturm-Liouville type equations. Using a local minimum theorem fordifferentiable functionals the existence of at least one non-trivialsolution is also ensured.
متن کاملAsymptotic distributions of Neumann problem for Sturm-Liouville equation
In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.
متن کاملOn inverse problem for singular Sturm-Liouville operator with discontinuity conditions
In this study, properties of spectral characteristic are investigated for singular Sturm-Liouville operators in the case where an eigen parameter not only appears in the differential equation but is also linearly contained in the jump conditions. Also Weyl function for considering operator has been defined and the theorems which related to uniqueness of solution of inverse proble...
متن کامل